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Abstract
First principles total energy calculations on hcp, ω (a three atom simple hexagonal), β (bcc) and
fcc phases of osmium have been performed as a function of hydrostatic compression employing
the FP-LAPW method. The comparison of total energies of these phases up to a maximum
compression V/V0 = 0.58 (pressure ∼ 700 GPa) shows that the hcp structure remains stable up
to this compression. The 300 K isotherm is determined after adding finite temperature thermal
contributions to the total energy calculated as a function of volume at 0 K. From the
theoretically determined isotherm, we have derived the shock Hugoniot of this metal and
determined the shock parameters C0 and s to be 4.48 km s−1 and 1.32, respectively. Employing
the theoretically calculated Gruneisen parameter in the differential form of the Lindemann
melting rule, we have determined the variation of melting point of the osmium with pressure.
The theoretically derived melting curve and the temperature rise along the Hugoniot predict the
shock melting of osmium at ∼447 GPa with a corresponding temperature of ∼9203 K.

1. Introduction

Osmium metal, located in the middle of the 5d series, adopts a
hexagonal closed packed structure and has the highest density
among elements under ambient temperature and pressure
conditions. This metal is very difficult to machine as it is
extremely hard and brittle. Moreover, it is difficult to handle
since it forms a toxic oxide when its powder is exposed
to air. Because of these difficulties, the experimental work
on this material under high pressure has been very limited.
For example, no report is available for studies on osmium
in shock wave experiments, which require the preparation of
large sized samples of well defined shapes. However, recently,
high pressure experiments using a diamond anvil cell (DAC),
which require very small samples of a few tens of micron in
dimensions have been reported [1–4].

The first experimental high pressure work on this metal
was reported by Cynn et al [1]. Based on the measurement of
the high pressure equation of state (EOS) of this metal up to
65 GPa using energy dispersive x-ray diffraction in the DAC
and determination of the zero pressure bulk modulus (B0), the
authors claimed that the bulk modulus of osmium (462 GPa)
is higher than that of diamond (445 GPa). This study was
immediately followed by the theoretical analysis by Joshi et al
[5], who reanalysed the experimental data of Cynn et al, and

also carried out first principle calculations and found that the
bulk modulus of Os is comparable with, but not more than, that
of diamond. Since then there have been many experimental
and theoretical high pressure studies on this material. A high
pressure powder x-ray diffraction study up to 58 GPa at room
temperature by Kenichi [2] with a better hydrostatic condition
in the DAC reported the B0 of Os to be 395 ± 15 GPa, which
is lower than that of diamond. This study revealed that the
c/a ratio of Os increases monotonically from 1.5800 at an
ambient pressure condition to 1.5856 at 58 GPa. Similarly,
Voronin et al [3] studied the high pressure–high temperature
behaviour of this metal up to 15 GPa and 1273 K using
energy dispersive x-ray diffraction in a T-cup 6–8 high pressure
apparatus. This apparatus is basically a two stage multi-anvil
system, with a first stage consisting of a steel cylinder split into
six parts enclosing a cubic cavity of dimension ∼20 mm and
the second stage which consists of an assembly of eight cubes
of polycrystalline diamond or WC having an edge length of
10 mm. Further, these cubes are separated by spacers and one
corner of each cube is truncated into a triangular face, the eight
truncations form an octahedral cavity in which the sample with
the pressure transmitting medium is compressed [6]. In yet
another angle dispersive x-ray diffraction study under static
high pressure carried out using the DAC, Occelli et al [4]
determined the 300 K isotherm of Os up to 75 GPa. This
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study suggested an iso-structural phase transition in Os near
25 GPa manifested by the anomaly in the rate of change of c/a
ratio with pressure. All these experimental studies are limited
to a pressure up to 75 GPa. Higher pressure measurements
under hydrostatic conditions are difficult as the compressibility
of the gasket materials (including rhenium) is higher than that
of Os. Due to higher compressibility of the gasket material
and the pressure transmitting medium than that of the osmium
sample, there is a possibility of the Os sample coming into
contact with the anvils of the DAC leading to the destruction
of hydrostaticity in the pressure. Thus, for generating the high
pressure equation of state data one has to resort to the use of
first principles methods.

In the present study, we have carried out ab initio
theoretical calculations on Os up to a few Mbar pressures. We
have examined the stability of its crystal structure, determined
the 300 K isotherm and the generated shock Hugoniot. Further,
we have studied the variation of melting temperature with
pressure and determined the melting temperature under shock
compression.

2. Theoretical method

In order to analyse the structural stability under hydrostatic
compression, the calculation of total energy as a function
of volume has been performed on hcp, ω (three atom
simple hexagonal cell), β (bcc) and fcc phases of osmium
employing a density functional approach based full potential
linearized augmented plane wave (FP-LAPW) method (WIEN
97 package [7]) within the generalized gradient approximation
(GGA) for the exchange–correlation energy. The muffin tin
radius used for all the structures is 1.8 au. The parameter
RKmax that determines the number of basis functions (size of
matrices) is chosen to be 10. Here R is the muffin tin radius and
Kmax is the magnitude of the largest K vector (reciprocal lattice
vector) used in the plane wave expansion. The dimension
of K 2

max is that of energy i.e. Rydberg. Before doing the
calculations a k-point convergence test was carried out at the
volume corresponding to the experimental equilibrium volume.
For this we varied the number of k-points in the Brillouin
zone from 500 to 9000. We found the k-point convergence at
approximately 8000 k points. Hence, for further calculations
we used 8000 k-points in the full Brillouin zone. In order
to examine the behaviour of the c/a ratio with compression
for the hcp structure, at each volume, we have carried out the
total energy calculations as a function of c/a, and determined
the optimum value of this ratio that corresponds to the lowest
total energy. This process is repeated for several volumes and
optimized c/a values were determined. The ω-phase, which
is an AlB2-type structure is treated as having two inequivalent
sites with one atom at site (0, 0, 0) (‘Al’ site) and one atom each
at sites (2/3, 1/3, 1/2) and (1/3, 2/3, 1/2) (‘B’ site) [8, 9].
The c/a ratio for the ω phase is taken to be the ideal value of
0.61. The calculations have been performed up to a volume
compression of ∼0.58. The structural stability analysis is
carried out by comparing the total energy of the hcp, ω, β

and fcc phases under hydrostatic compression. The 300 K
isotherm, Hugoniot and pressure effect on melting of osmium
are determined as follows.

2.1. Isotherm at 300 K

In order to generate the theoretical isotherm a polynomial fit
between the total energy versus unit cell volume is carried out
and the pressure as a function of volume at 0 K from this fit is
determined using the following expression:

P = −∂ Ec

∂V
, (1)

where Ec is the total energy and V is unit cell volume. The
zero pressure bulk modulus (B0) and its pressure derivative at
zero pressure (B ′

0) were obtained by fitting the P–V data to the
third order Birch Murnaghan equation of state:

P = 3
2 B0(η

−7/3 − η−5/3)[1 + 3
4 (B ′

0 − 4)(η−2/3 − 1)], (2)

where η = V/V0. Here V and V0 are the volume at a given
pressure and volume at zero pressure, respectively. The bulk
modulus B and its pressure derivative B ′ at various volumes
are then determined from equation (2) as follows:

B = −V
∂ P

∂V
and B ′ = ∂ B

∂ P
= − V

B

∂ B

∂V
. (3)

To determine the 300 K isotherm we have adopted the
following procedure. The total energy and pressure at given
temperature T and volume V can be expressed as [10–13]

E(V , T ) = Ec(V ) + ET(V , T ) + Ee(V , T ) (4)

P(V , T ) = −∂ F(V , T )

∂V
=− ∂ Fc

∂V
− ∂ FT(V , T )

∂V
− ∂ Fe(V , T )

∂V
,

(5)
where F(V , T ) is the Helmholtz free energy at temperature T
and volume V with Fc, denoting the free energy at 0 K, and
FT(V , T ) and Fe(V , T ) corresponding to the thermal lattice
and thermal electronic contributions, respectively. Equation (5)
can equivalently be written as [10, 11, 14]

P(V , T ) = −∂ Ec(V )

∂V
+ γ ET

V
+ γe

Ee

V
. (6)

Here ET is the thermal lattice contribution including the zero
point vibration energy and Ee = 1

2βT 2 is thermal electronic
contribution to the total energy. γ and γe are the vibrational
and electronic Gruneisen parameters, respectively. β is the
coefficient of electronic specific heat. At 300 K the electronic
contributions are very small, hence to determine the 300 K
isotherm these terms in equations (4) and (6) are neglected.
γ is determined using the following definition:

γ = −∂ ln θD

∂ ln V
. (7)

Here, θD is the pressure dependent Debye temperature, which
is determined using the following expression [11, 13]:

θD = 251.45

√
M

ρ
V

− 1
3

M , (8)
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where the mean modulus M , density ρ and molar volume VM

are in GPa, g cm−3 and cm3 mol−1, respectively. M is defined
as (derived in the appendix)

M = 3
5
3

(
B

(1 + σ)

)[(
1

1 − σ

) 3
2

+ 2

(
2

1 − 2σ

) 3
2
]− 2

3

. (9)

The Poisson ratio (σ ) required for determination of M is
taken to be 0.25 from the literature (www.webelements.com).
The ET per atom including zero point energy is determined
using the high temperature limit of the Debye model of lattice
vibrations [11, 15]:

ET = 3kBT

[
1 +

(
1

20

)(
θD

T

)2

−
(

1

1680

)(
θD

T

)4]
. (10)

Here kB is the Boltzmann constant.
Finally the 300 K isotherm is evaluated by substituting the

value of γ and ET calculated at T = 300 K using equations (7)
through (10) in equation (6).

2.2. Shock Hugoniot

The shock Hugoniot of osmium is determined by applying the
procedure followed by Gupta et al [13]. For this purpose we
used equations (4) and (6) in the Rankine–Hugoniot equation
according to which the increase in total energy of a material
upon shock compression from an initial volume of V0 to a final
volume of V is expressed as [16, 17]

E(V , TH) − E(V0, T0) = 1
2 [P(V , TH) + P(V0,T0)]

× [V0 − V ]. (11)

Here TH is the temperature rise along the shock Hugoniot and
T0 is the room temperature.

At the high temperatures generated during shock
compression i.e. T � θD the expression for ET is reduced
as

ET = 3kBT . (12)

As the temperatures generated during shock compressions
are high it is also essential to consider the contribution of
electronic excitations. The β and γe required for evaluation of
electronic contributions to energy and pressure are determined
using the following expressions [11, 18]:

β = π2k2
B N(Ef)/3, (13)

where N(Ef) is the density of states at the Fermi level, which
is determined at various unit cell volumes from FP-LAPW
calculations, and

γe = ∂ ln β

∂ ln V
. (14)

Finally, using the energies E(V , T ) and corresponding
pressures P(V , T ) calculated according to equations (4)
and (6) the Hugoniot was determined by finding the
temperature and pressure for which the Rankine–Hugoniot
relation is satisfied at each volume.

2.3. The pressure effect on melting and shock induced melting

The pressure effect on melting is determined using the
procedure followed by Soma et al [19]. In the Debye model,
the root mean square displacement 〈u2〉 at a temperature T
higher than Debye temperature θD is expressed as [18]

〈u2〉 = 3h̄2T

mkBθ2
D

, (15)

where m is the atomic mass. Lindemann’s law for melting
states that at the temperature, at which the ratio of the
square root of the mean square displacement to the nearest
neighbour distance exceeds a limit xmelt, melting of a solid
starts. Mathematically it is expressed as follows.

For melting to occur the√〈u2〉
R1

� xmelt, (16)

where R1 is the nearest neighbour distance. Using
equations (15) and (16) the melting temperature can be
expressed as

Tmelt = x2
melt

3h̄2
mkBθ2

D R2
1 . (17)

This equation in differential form can be written as [19]

d(ln Tmelt)

d(ln V )
= −2γ + 2

3
. (18)

This differential equation, solved by satisfying the melting
point Tmelt (η = 1) under atmospheric pressure with crystal
volume V0, yields [19]

Tmelt(y) = Tmelt(1) exp

[
2
∫ 1

η

γ (η) − 1/3

η
dη

]
. (19)

The variation in melting temperature as a function of compres-
sion η is determined using the theoretically determined γ (η) in
equation (19). The melting temperature is plotted as a function
of compression or corresponding pressure. Finally, the tem-
perature rise along the Hugoniot and the melting temperature
as a function of pressure are plotted together and the crossover
of the two curves yields the shock pressure and corresponding
temperature at which melting of Os occurs under shock com-
pression.

3. Results and discussions

To analyse the structural stability of the osmium, the total
energy calculated for the hcp, ω, β and fcc phases under
hydrostatic compression is plotted against the unit cell volume
in figure 1, which displays the total energy of these phases
relative to the hcp structure. This figure shows that the hcp
structure is lowest in energy, hence it is thermodynamically
a stable structure up to the maximum compression η =
0.58 (∼700 GPa). The 0 K isotherm determined from
the polynomial fit of total energy with volume gives the
value of V0 to be 14.41 (Å)3/atom as compared to the
experimental value of 13.97 (Å)3/atom [4]. The B0 and B ′

0

3
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Figure 1. Total energy as a function of hydrostatic compression for
various phases of osmium. Total energies for various phases are
plotted relative to the hcp phase.

Figure 2. 300 K isotherm of osmium.

obtained by fitting the 0 K isotherm to the third order Birch
Murnaghan EOS are 442 GPa and 3.96, as compared to the
experimental values ranging from 395 to 462 GPa and 4.5–
2.4, respectively [1–4]. The 300 K isotherm obtained after
adding the thermal contributions at 300 K to the theoretically
determined 0 K isotherm is displayed in figure 2. For a better
comparison with experimental data the 300 K isotherm for
lower compressions is plotted in figure 3. The theoretical
300 K isotherm agrees well with the experimental data. For
determination of the 300 K isotherm from the 0 K isotherm, we
have calculated the volume dependent Debye temperature, the
value of which at ambient volume is obtained as being 474 K
as compared to the experimental value of 500 K [18].

Figure 4 displays the theoretically determined optimum
c/a at 0 K along with experimental data [1–4] as a function
of pressure. Our calculations show that the c/a ratio increases
with increasing pressure monotonically and does not show any
anomalous behaviour.

The Hugoniot determined from the theoretical isotherm is
plotted in the P–η plane in figure 5. The same is represented
in figure 6 as a relation between the shock velocity (Us) and
particle velocity (Up) by using the two shock jump conditions,
namely the mass and momentum conservation equation [17].
Figure 6 shows that the Hugoniot in the Us–Up plane is linear

Figure 3. 300 K isotherm for osmium for small compressions.

Figure 4. Optimized c/a ratio as a function of pressure for osmium.

Figure 5. Hugoniot of osmium represented in the P–η plane. The
theoretical 300 K isotherm is also shown.

(Us = C0 + sUp). The Us–Up behaviour is fitted to a straight
line, where C0 corresponds to the bulk sound speed. The
values of C0 and s evaluated from the linear fit between the
theoretically determined Us and Up are 4.48 km s−1 and 1.32,
respectively.

The pressure dependence of the melting temperature is
determined using equation (19). As shown in figure 7, for

4
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Figure 6. Shock velocity as a function of particle velocity in
osmium.

Figure 7. γ as a function of η for osmium. The symbols show γ
calculated theoretically at various η and the solid curve shows a
polynomial fit of γ with η.

this purpose γ determined as a function of volume from
equation (7) is fitted to η and a functional relationship between
γ and η (displayed in figure 6) is obtained. The room pressure
melting temperature Tmelt (1) used in equation (19) is taken as
3306 K from the literature [18]. Figure 8 displays the melting
temperature as a function of pressure for this metal. Also, the
temperature rise calculated along shock Hugoniot is plotted in
this figure. It is clear from figure 7 that the Hugoniot crosses
the melting curve at a pressure of ∼447 GPa and temperature
of ∼9203 K, suggesting that shock induced melting in osmium
will start at this pressure.

4. Summary

The structural stability analysis of Os shows that the hcp phase
is energetically favourable over the ω, β and fcc phases up to a
compression of ∼0.58 (corresponding pressure ∼ 700 GPa).
The quantities V0, B0, B ′

0 and θD determined theoretically
agree well with the experimental values. The 300 K isotherm
derived from the 0 K isotherm shows excellent agreement with
the experimental data. The Hugoniot of Os is predicted from
the theoretically determined 0 K isotherm. From the linear

Figure 8. The melting temperature and shock temperature as a
function of pressure for Os.

fit of the theoretically determined Us–Up values the C0 and
s are determined to be 4.48 km s−1 and 1.32, respectively.
Using the Lindemann law of melting in conjunction with
our theoretically determined volume dependent Gruneisen
parameter, we have determined the pressure effect on melting.
From the theoretically determined temperature rise along the
Hugoniot and the pressure dependence of melting, we have
predicted the shock melting of Os to occur at ∼447 GPa with
a corresponding temperature of 9203 K.

Appendix

The expression for M is derived using the following approach.
In the Debye model of lattice vibrations the Debye temperature
(θD) and cut-off frequency (ωD) are related as follows [18]:

θD = h̄ωD

kB
. (A.1)

In Debye model the velocity of sound for each type of
polarization is taken to be constant i.e. the solid is considered
as a classical elastic continuum. Under this approximation the
cut-off frequency and cut-off wavevector (KD) are related as

ωD = C KD, (A.2)

where C is the average velocity of sound. KD is given as [18]

KD =
(

6π2 N

V

) 1
3

. (A.3)

Here N is number of primitive cells and V is the corresponding
volume. Substituting equations (A.2) and (A.3) into
equation (A.1) one gets

θD = h̄

kB

(
6π2 N

V

) 1
3

C. (A.4)

If we take V as the molar volume (VM) then N becomes
the Avogadro number. Then substituting the values of the
constants in equation (A.4) in CGS units we get

θD = 2.5145 × 10−3V
− 1

3
M C. (A.5)

5
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In the Debye model for an isotropic solid the average sound
velocity is the weighted mean of the velocities for one
longitudinal and two degenerated transverse polarizations:

1

C3
= 1

3

(
1

C3
L

+ 2

C3
T

)
, (A.6)

where CL and CT are the velocities for the longitudinal and
transverse polarizations, respectively. CL and CT are related to
the elastic moduli as follows:

CL =
√

B + 4
3 G

ρ
and CT =

√
G

ρ
. (A.7)

Here B , G and ρ are the bulk modulus, shear modulus and
density, respectively. For an isotropic solid the Poisson ratio
(σ ) and elastic moduli are related as follows:

σ = 3B − 2G

2(3B + G)
. (A.8)

The above equation can also be expressed in the following
forms:

B + 4
3 G = 2

3 (1 − σ)(3B + G);

G = 1
3 (1 − 2σ)(3B + G); 3B + G = 9

2

B

(1 + σ)
.

(A.9)
Using equations (A.9) the CL and CT can be rewritten as

CL =
√

3B(1 − σ)

ρ(1 + σ)
and CT =

√
3B(1 − 2σ)

2ρ(1 + σ)
.

(A.10)
Substitution of CL and CT from equations (A.10) to
equation (A.6) yields

1

C
= 1

3
1
3

(
3B

ρ(1 + σ)

)− 1
2
[(

1

1 − σ

) 3
2

+ 2

(
2

1 − 2σ

) 3
2
] 1

3

or

C = 3
1
3

(
3B

ρ(1 + σ)

) 1
2
[(

1

1 − σ

) 3
2

+ 2

(
2

1 − 2σ

) 3
2
]− 1

3

or C =
√

M

ρ
, with

M = 3
5
3

(
B

(1 + σ)

)[(
1

1 − σ

) 3
2

+ 2

(
2

1 − 2σ

) 3
2
]− 2

3

.

(A.11)
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